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The counterpart of metamaterials in light optics for nonrelativistic matter waves governed by the Schrödinger equation can
be found by transiently reversing the group velocity using a so called comoving potential. Possible applications to wave-packet
dynamics, atom interferometry, and atom deceleration are described.

1. Introduction

The genuine concept of “meta” materials for electromagnetic
waves originates from the now famous Veselago’s paper
published in 1967 [1]. The basic idea is that, in a material
with negative electric permittivity (ε < 0) and negative
magnetic permeability (μ < 0), Maxwell equations impose
that the wave vector k and the Poynting vector S of a planar
wave have opposite directions and, because of causality,
the effective optical index is real negative: n = −(εμ)1/2.
The realisation of such artificial or “meta” materials, also
called left-handed materials (LHM), in a wide range of
wavelengths, has been—and continues to be—the subject
of considerable theoretical and experimental efforts [2–4].
Compared to an ordinary material with a positive index, a
metamaterial has a similar group velocity, whereas its phase
velocity is reversed. This gives rise to the negative refraction
phenomenon, owing to which so-called “meta” lenses are
conceivable. The concept is rather easily extended to matter
waves, provided that the effective mass of the particle be zero
or close to zero, as it is the case for electrons in graphene,
governed by a (relativistic) Dirac equation [5].

Paradoxically the situation is much more intricate with
nonrelativistic particles, as atoms having a thermal velocity
(a few hundreds ms−1), the dynamics of which is governed by

the Schrödinger equation. The first obstacle is the inability of
atoms to penetrate dense matter: hence a “material” should
be replaced by a “medium”, namely, some external potential
created in vacuum. A second difficulty comes from the fact
that, in this situation, the phase velocity is an ambiguous
concept since it is gauge dependent and its inversion appears
to be problematic, if not meaningless. Nevertheless the key
property of a metamedium lies in the opposite directions
of phase and group velocities, a property which will be
realised in our case by simply reversing the group velocity.
Obviously, given a source of atoms, this property has
necessarily a transient character since the group velocity
is associated to the density of the probability flux which
should finally be oriented outwards from the source. As a
consequence, the external potential, assumed to depend on
a single spatial coordinate (x), must be also time dependent,
of the type V(x, t). In the following, the variation in x
of this potential will be considered as being slow at the
de Broglie wavelength (λ) scale, allowing us to use “short
wavelength approximations,” for example, WKB or iconal
approximation. As shown in part 2, comoving potentials [6],
of the general form

V(x, t) = V0s(t) cos
(

2π
x

Λ

)
, (1)
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where V0 is a constant amplitude, s(t) is a normalized signal
of finite duration, are able to cause the searched inversion
of the group velocity and to induce a negative refraction
upon the atomic trajectory [7]. The direct observation of
this negative refraction on atomic trajectories implies a low
velocity and/or a sufficiently high magnitude V0, that is,
in the case of a magnetic potential, a sufficiently intense
magnetic field (typically a few hundreds Gauss at a velocity
of a few ms−1. An atom interferometer as a Stern-Gerlach
interferometer [8] is a much more sensitive tool to evidence
the effect, in so far as it transforms a phase shift into a
variation of intensity (part 3).

Two other consequences of the group-velocity inversion
are worth to be noted: (i) primarily the negative refraction
concerns the motion of a wave packet centre, but it affects
also the shape of this wave packet, especially its width—
which is reduced—, along the same general trend, namely,
a transient time reversal [9]; (ii) for similar reasons, the
fact that the potential is time dependent results into a
nonconservation of energy and more precisely (in the
case of negative refraction) into a decrease of the atom
velocity. This phenomenon plays an important role in atom
interferometry. It can be used to slow down atoms (part 4).
As the total length of such a slower is an increasing function
of the spatial period Λ of the potential, there is a great
advantage to make use of a comoving optical potential for
which Λ is of a few hundreds of nm [10].

Whilst they can give rise to similar effects (together
with other specific effects), metamedia for atomic waves
are basically different from metamaterials for light optics
essentially because of the fundamental difference existing
between the related wave equations (Schrödinger versus
Maxwell or Dirac). To conclude (part 5), owing to the
relative simplicity of their realisation as well as their large
domain of applicability, metamedia are expected to play in
the future a significant role in atom optics. Nevertheless
note that a distinct approach to negative refraction for
ultra-cold atoms, based upon “quantum simulators,” allows
one to simulate condensed matter physics processes with
cold atoms (For instance honeycomb optical lattices may
be used to reproduce electron dynamics in grapheme [11,
12]. Also specific non-Abelian gauge potentials, simulated
with light fields of given wave-vectors and frequencies allow
one to assign a quasi-null effective mass to ultracold atoms
(v < 1 cm/s) [13]. Thus, an adequate Klein potential
barrier should induce negative refraction.) [11–13]. In the
following of this paper we shall not consider this type of
situations.

2. General Principle: Negative Index

The concept of comoving field of the form given previously,
together with its generic property to fashion the momen-
tum (k)-dependence of the resulting phase shift, have been
introduced in 1997 [6]. Indeed it can be shown [10], using
the WKB approximation, that for a field differing from
zero within a given interval [0, τ1], an incident plane wave
Ψ0(k, x, t) of specific momentum k, freely propagating along

the direction x, is altered by the comoving potential via a
simple phase factor, becoming Ψ = Ψ0eiϕ(k,t) with

ϕ(k, t) = − �−1
∫ T

0
dt′V0s(t′) cos

(
2π

�k

mΛ
t′
)

− �−1V0s
(
τ−1
)
Θ(t − τ1) cos

(
2π

�k

mΛ
τ1

)
(t − τ1).

(2)

In (2), T = min[t, τ1], τ−1 is smaller than and arbitrarily
close to τ1, m is the atom mass and Θ the Heaviside function.
The second term in (2) results from the time-dependence
of V , hence the nonconservation of energy. It warrants the
continuity of ϕ and Ψ and their derivatives at t = τ1.

Let us now consider a wave packet, the momentum
distribution of which, ρ(k), is centred at k0. Using the
stationary-phase approximation, it is seen that the potential
induces a spatial shift δxc upon the motion xc0(t) of the wave
packet centre:

xc = xc0 + δxc = �k0

m
t − [∂kϕ]k0

(3)

which gives:

δxc(t) = − 2πV0

mΛ

×
[∫ T

0
t′s(t′) sin

(
2π�k0t′

mΛ

)
dt′ + τ1s(τ1)Θ(t − τ1)

× sin
(

2π�k0τ1

mΛ

)
(t − τ1)

]
.

(4)

For t > τ1, the integral part takes a finite limiting value,
whereas the other term, linear in (t − τ1), corresponds to a
definite change

δv(τ1) = −2πV0

mΛ
τ1s(τ1) sin

(
2π�k0τ1

mΛ

)
(5)

of the final velocity. This change becomes negligible for
comoving pulses of a sufficiently long duration, provided
that the product τ1s(τ1) tends to zero when τ1 → ∞. The
important point here is that, by a proper choice of s(t),
the k-dependence of ϕ can be made such that the group
velocity (i.e., the velocity of the wave packet centre) be
transiently negative. A trajectory initially in plane x, z, with
initial velocity components vx0 > 0, vz0 > 0, remains in this
plane, exhibiting the negative refraction since vx becomes
transiently negative whereas the motion along z remains
unaltered. For a sufficiently large value of τ1, the behaviour
of the trajectory is similar to that of a ray traversing a
negative-index flat plate with parallel surfaces. Figure 1(a)
shows an example of such a trajectory for a metastable argon
atom Ar∗(3P2), spin polarized in Zeeman state M = +2,
experiencing a magnetic comoving potential with V0 =
2gμBB0, g being the Landé factor, μB the Bohr magneton and
B0 = 50 mT the magnetic field intensity. In this example,
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Figure 1: (a) Example of negative refraction of metastable argon atoms Ar∗ (3P2) polarized in Zeeman stateM = +2. Lower red curve: atomic
trajectory in plane z, x under the action of a magnetic field comoving in the x direction. Blue straight line: free propagation. Parameters of
the comoving field are as follows (see text): spatial period Λ = 5 mm, magnitude of the magnetic field B0 = 49 mT, velocity components
v0x = 1.2 ms−1, v0z = 20 ms−1, time constant τ = 0.37 ms, duration τ1 = 4.0 ms. The point-like source is on the z axis at z = −2 cm. The
angle β between the local velocity and the z axis (see text) is shown. (b) Effective constant index (see text, (6a)) as a function of B0. Curve
> 0: the index is negative for B0 > 38 mT. Curve M < 0: the index (multiplied by 10) is positive for any value of B0. (c) Index n as a function
of z and θ, derived from an ensemble of trajectories similar to that shown in (a), but with different incidence angles. Positions in the (z, θ)
plane where n → ±∞ correspond to points where the atom velocity is parallel to the z axis. In between these two values, n is negative.

Λ = 5 mm, vx0 = 1.2 m s−1, vz0 = 20 m s−1. The time-
dependent signal is s(t) = exp[−t/τ] with τ = 0.37 ms
and τ1 = 4 ms. Note that, at these low velocities, the lateral
shift of the trajectory is rather large (1.2 mm) in spite of the
relatively modest value of the magnetic field. Other values
of M(+1, 0,−1,−2) would lead to shifts proportional to M,
which means that the comoving potential acts as an efficient
beam splitter. More generally the comoving potential zone
behaves as a multirefringent plate.

Assuming that deflection angles are small, by comparison
with the light-optics counterpart under similar conditions,
one can obtain an effective index n given, for τ1 � τ, by [14]

n−1 ≈ 1− 2τ3MgμBB0

mτmax

(
2π
Λ

)2

, (6a)

where τmax is an estimate of the time at which δxc reaches its
asymptotic value (τmax ≈ 1.6τ). As it is seen in Figure 1(b),
for M > 0, the effective index becomes negative for values
of B0 larger than a critical value, Bc = 38 mT in the present
case. The fact that n → ±∞ at B0 = Bc is not really a
singularity since it simply means, in the light-optics analogy,
that the ray inside the plate is normal to the plate’s surfaces.
On the other hand, for M < 0, n is positive for any value of
B0, giving rise to ordinary positive refraction. The effective
index given by (6a) is a constant related to a simplified
trajectory consisting of three portions of straight lines. In the
case of a comoving field, on the other hand, the index is z-
dependent. It can be derived from the usual ray equation in
an inhomogeneous medium: (nr′)′ =∇n, where (′) = d/ds, s
being the curvilinear abscissa. As a function of the variable
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X(z) = (dx/dz), the element of curvilinear abscissa is ds =
dz
√

1 + X2. Then the index is simply:

n = A

√
X2 + 1
X

, (6b)

where A is a constant such that n(z = 0) = 1. This expression
of n simply reflects the Snell-Descartes refraction law in a
medium stratified by planes orthogonal to z, namely

n sinβ = constant, (6c)

where β = ArcTan(vx/v0z). Finally, once modelled the
trajectory, the index profile n(z) can be derived. Note that
n has the sign of X and, as expected, it is infinite when
X = 0. Actually especially at large values of z, the index
profile derived from ((6b)-(6c)) depends on the angle of
incidence θ since the constant in (6c) is sin θ. On the other
hand the medium is invariant in any translation along x. As a
conclusion the metamedium is anisotropic. Figure 1(c) shows
the 2D profile of the index n(z, θ) derived from an ensemble
of trajectories similar to that of Figure 1(a), but calculated
with different incidence angles ranging from 0 to 0.1 rad.

3. Negative-Index Medium in a Stern-Gerlach
Atom Interferometer

A standard Stern-Gerlach atom interferometer [8], also
called some years later “spin-echo experiment,” in analogy
to the well-known method of neutron spin-echo [15, 16],
is a longitudinal polarisation interferometer in which an
integrable static magnetic field profile B(x), that is, a M-
dependent magnetic potential W(x) = gμBMB(x), induces
upon a planar wave (of momentum k) describing the
external motion along x, a phase shift of the form Mφ. In
the following semiclassical approximation:

φ ≈ 1
�v

∫ +∞

−∞
W(x)dx, (7)

where v ≈ �k/m. Starting from a given Zeeman state
|M0〉 issued from a polarizer, for example, a Stern-Gerlach
polarizer, one first prepares, using Majorana transitions (fast
rotation of a tiny magnetic field) [17], a linear superposition
of M-states

|Ψi〉 =
∑
M

aM0M|M〉, (8)

where the aM0M are constant coefficients. Beyond the field
profile B(x), it becomes

∣∣∣Ψ f

〉
=
∑
M

aM0Me
iMφ|M〉. (9)

Then a second Majorana zone generates the new combina-
tion (where the bMM′-s are constant)

|Ψo〉 =
∑
M,M′

aM0MbMM′eiMφ
∣∣M′〉. (10)

Finally, an analyzer (similar to the polarizer) selects a specific
Zeeman state |M1〉 and one measures the final intensity

I1 =
∣∣∣∣∣∣
∑
M

aM0MbMM1e
iMφ

∣∣∣∣∣∣
2

. (11)

It contains interference terms in φ which can be evidenced by
varying the magnitude of the magnetic field or the velocity.
In place of a static field profile, a comoving field can be
used as well, as it has been demonstrated in [6] with a
beam of fast (v = 104 ms−1) metastable hydrogen atoms
H∗(2 2S1/2, F = 1). Very recently, experiments dealing with
similar questions have been realized by Sulyok et al. with a
beam of neutrons at a velocity of 2000 ms−1, in a so-called
perfect crystal interferometer [18]. The magnetic potential
they use is a sum of terms of the form C(x)Vk cos(ωkt +
ϕk), where C(x) is a square function of a definite width L
and Vk, ωk, ϕk are constants. It might seem different from
our comoving potential. However it can be readily seen (by
taking the Fourier transform of the spatial dependence) that
this potential is actually a sum of comoving terms.

The main questions that arise about the use of comoving
potentials as phase objects in an interferometer deal with
similarities and differences they present with respect to static
potentials. The first specificity of comoving potentials is that,
because of the transient character of the effect, a treatment
using wave packets is needed. Apart from the narrowing
effect mentioned previously (difficult to observe except at
low velocity), the first consequence of that is the critical
velocity dependence of the interference effect, particularly
when a purely sinusoidal signal of the type s(t) = cos(2πνt)
is used. Indeed in that case there exists a “resonant” atomic
velocity coinciding with the field velocity ucom = νΛ. This
resonant velocity can correspond to a bright fringe or a dark
fringe, according to the value of the magnitude B0 of the
magnetic field (which is generally low, less than 100 mG).
This central fringe is surrounded by few other fringes within
the envelope of the resonance. This phenomenon has been
observed using a time-of-flight technique, with a single zone
(see Figure 2, taken from [6]) or a double zone of comoving
field.

Another manifestation, specific of comoving potentials,
appears when a nonsinusoidal signal of a finite duration is
used, for example, s(t) = e−t/τ for 0 < t < τ1,= 0 elsewhere.
When the value of the cut-off time τ1 is large compared to
τ, final velocities v+ and v− related to sublevels M > 0 and
M < 0, are almost equal to the initial velocity v0. On the
contrary, when τ1 is comparable to or smaller than τ, one
gets v+ < v0 (beginning of a negative refraction) and v− > v0.
At τ = τ1, the abscissas of the “+” and “−” wave packets are
such that x+ < x−, then their mutual longitudinal separation
ΔLx monotonously increases with t or x, which cancels any
interference effect between them (once remixed), in other
words a total loss of contrast as the distance to the detector
is increased. Figure 3(a) shows ΔLx as a function of x in the
realistic case of metastable argon atoms of initial velocity
v0 = 560 m s−1. Whilst the magnitude of ΔLx may seem small
(a fraction of 1 μm), it is much larger than the wavelength
(0.02 nm) and the effect on the interference is drastic.
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Figure 2: Time-of-flight spectrum over a distance of 49 cm, of
hydrogen metastable atoms (H∗2s, F = 1) going out of a
Stern-Gerlach atom interferometer (see text). The atom velocity is
10 km s−1. Open circles: a comoving field is used as a phase object.
The value B0 = 6.5μT is chosen to get a central bright fringe. The
spatial period is Λ = 2 cm and a unique frequency ν = 440 kHz
is used. The field velocity is Λν = 8.8 km s−1, which corresponds
to the time of flight indicated by a vertical (red) arrow. Light line:
time-of-flight spectrum without the interferometer.

A similar phenomenon is described in [18] for the case of
neutron interferometry. In principle it is possible to recover
the contrast via the action of a second reversed comoving
pulse provided that the characteristics of this second pulse
(especially its duration τ1) are adjusted such that the final
velocities are exactly equal to each other. Figure 3(b) shows
an example of such compensation—over a distance of several
centimetres—by means of a second reversed pulse similar to
the first one but applied 2 ms later.

Figure 4 shows the high sensitivity of the interferometer
operating with metastable argon atoms at thermal velocity
(560 ms−1). At such large velocity the inelastic effect induced
by the potential pulse is small enough to make the contrast
practically independent of the distance at which the detector
is placed (from 0.1 to 1 m). On the other hand the contrast
is reduced at “large” field magnitude, of the order of 0.1 mT
or more, because of the increasing spatial separation between
the two interfering wave packets and the related decrease of
their overlap.

4. Atom (or Molecule) Slower

As explained in part 2, the primary effect of a potential
pulse, comoving in the x direction, the sign of which is such
that (for a sufficient magnitude) it results into a negative
refraction, is to reduce the velocity component along x by
an amount, derived from (3) (for t ≤ τ1):

δv(t) = ∂tδxc = −2πV0

mΛ
ts(t) sin

(
2π�k0t

mΛ

)
. (12)

In principle this effect can be used to slow down atoms
or molecules. For neutrons this was shown to work [19].
However when the initial velocities are in the thermal range
(e.g., 560 ms−1 for Ar∗ atoms) the predicted reduction of v
is quite small, typically of a few mm s−1, at least (in the case
of a magnetic potential) for reasonable values of B0, namely
less than 0.1 T. As a consequence, to reduce the velocity down
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Figure 3: (a) Effect of a short comoving pulse on the final velocities.
The conditions are the same as in Figure 1(a) except the pulse
duration, τ1 = 1.5 ms (instead of 4 ms), indicated (converted in z
value) by the broken vertical line. It is seen that the final velocity for
atoms in state M = −2 (upper green trajectory) is larger than for
atoms in state M = +2 (lower red trajectory). The two related wave
packets fligh apart from each other, cancelling the interference effect
between them once they are remixed (see text). (b) Compensation
of this effect by means of a second reversed comoving pulse. The
first pulse is the same as in 3(a) (starting time t = 0, duration
τ1 = 1.5 ms, B0 = 49 mT). The second pulse starts at t = 2.0 ms
(second vertical broken line), its duration is also 1.5 ms and its
amplitude is B0 = 49 mT. Resulting trajectories are shown as in (a).
Final velocities become equal to the initial velocity.

to almost zero, a large number of successive pulses is needed.
This is made possible by the fact that, immediately after the
end of a pulse of duration τ1 the velocity is practically equal
to the reduced velocity obtained at time τ1. Then, when (after
a short blank) the next pulse is applied, this latter velocity
becomes the initial velocity, which is in turn reduced, and
so forth. The best choice for the pulse duration τ1 is such
that |δv(τ1)| derived from (5) takes its first maximum value.
For a signal of the form s(t) = exp(−t/τ) [6], there exists an
optimum value of the time constant τ leading to an absolute
maximum of |δv(τ1)|. For v = 20 ms−1, the best values are
obtained for τ = 63.3μs and τ1 = 62.6μs. Actually they are
almost equal to each other and their dependence on v is such
that the product of the optimum value of τ1 by v is a constant.
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Figure 4: Calculated interference pattern of Ar∗(3P2) atoms passing
through a Stern-Gerlach interferometer at 560 ms−1. The phase
object is a comoving potential pulse similar to that considered in
Figure 1(a), except for the magnitude B0 of the field which is now
the variable parameter. About 260 fringes are present within the
interval [0, 0.1 mT = 1 Gauss] (see the inset for a zoom over an
interval of 5 μT = 50 milliGauss). The contrast decreases together
with the overlap of the interfering wave packets (see text).

This means that the atomic path covered through successive
pulses is almost a constant.

The present method bears some similarities with the so-
called “adiabatic slowing” [20, 21]. This latter method has
been applied to a wide variety of species, such as hydrogen
atoms, polar and non polar molecules [22], Rydberg atoms
and Rydberg molecules [23–25]. Low final velocities (a few
10 ms−1) are accessible, but at the price of rather strong fields
(e.g., B0 = 5.2 T in [23–25]). Here, the nature of the force
is quite different, since it derives from a special potential
depending on both space and time. In principle the method
is applicable to the same species, with the advantage that it
uses much lower fields.

As shown in [10] an atom slower using magnetic
potential pulses (B0 = 80 mT, Λ = 5 mm) is able to reduce
the velocity of metastable argon atoms from 560 m s−1 down
to almost zero over a distance of 2.2 m, comparable to the
total length of a standard Zeeman slower [26]. For a given
magnitude of the potential, the length is governed by the
spatial period Λ. In a simple magnetic version, it is almost
impossible to reduce it below 1 mm, whereas the use of a
dipolar optical potential obtained in a off-resonance standing
wave provides us with a huge reduction of the period, which
is half the optical wavelength Λ = λopt/2 (≈ 0.4 μm in the
case of metastable argon atoms). Far from resonance the
general form of such a potential is [27]:

V(x, t) ≈ �Ω2

δω
s(t)cos2

(
2π

x

λopt

)
, (13)

where Ω is the Rabi frequency and δω the detuning. To
operate “far from resonance” (to avoid any spontaneous
emission), the difference between the laser frequency and the
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Figure 5: Calculated evolution of the velocity v along the slowing
process using optical comoving pulses (see text), as a function of the
abscissa z. An almost complete stopping is achieved at z = 19 cm.

two resonances appearing in the standing wave, Doppler-
shifted by Δω = ± koptv, must be large compared to the
power-broadened line width γ′ = (1 + Σ)1/2γ, where γ
is the natural line width and Σ the saturation parameter.
To get a magnitude of the potential sufficiently high to
achieve the complete slowing over a distance shorter than say,
20 cm, using a reasonable laser power (e.g., 32 mW mm−2),
a moderately large (negative) detuning should be chosen,
such as δω = −2π3.45 × 109 rad/s (3.45 GHz). This leads to
a ratio = δω/γ′ = 12.49, large compared to 1. As the velocity
v is lowered, Δω decreases, tending to zero as v → 0. Then
either the detuning is kept constant and the condition R� 1
is better and better verified, or δω is kept equal to 5Δω(v),
allowing us to reduce the intensity (as v) as well as γ′ (as
v1/2), but then the ratio R decreases as v1/2, which implies
a lower limit for v (R = 1 at v = 3.59 m/s). As before a
series of many pulses separated from each other by small
blanks is applied, each of them (numbered n) providing
a small decrease |δv| of the velocity (a few mm/s). The
duration τ1(n) of each pulse is adjusted in such a way that
the first maximum value of |δv| is reached at the end of
the pulse. As previously the path vτ1 covered by the atom
during successive pulses is roughly a constant (≈0.12 μm).
Figure 5 shows how the velocity v decreases down to almost
zero (with the restriction mentioned before) as a function of
z. The total number of applied pulses is large (about 2 106)
but the total length is now 19.2 cm. Note that the method
does not imply any permanent magnetic moment of the
atom and is applicable for instance to Ar∗(3P0) metastable
atoms.

In addition to the advantages of its short length and
the absence of any random spreading of the velocity (at
least if the spontaneous emission is negligible), the present
decelerator is interesting from the point of view of the
atomic density in the phase space. Indeed an important
characteristic of comoving fields is their effect on the
longitudinal spatial width of the atomic wave-packet. As
mentioned previously [9], comoving potentials are able to
transiently narrow wave packets, compensating for the free-
propagation natural spreading. In the present case this effect
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is very small at the beginning of the deceleration process but
becomes more and more important as the velocity decreases.
As a result the wave packet width δx progressively deviates
from the free-propagation width δx0(t) to rejoin its initial
value δx0(0). On the other hand it can be verified, using
the Wigner function, that the width δk of the momentum
distribution remains unchanged, the reason being that the
effect of the potential is a pure real phase shift. Consequently
the density (δk δx)−1 in the phase space (x, kx), instead of
continuously decreasing, recovers its initial value at the end
of the slowing process.

5. Conclusion

In this paper comoving fields have been introduced in
view of realizing negative-index media for matter waves
in the nonrelativistic regime. Because of the fundamental
difference between Schrödinger and Maxwell (or Dirac)
equations, especially for what concerns the phase veloc-
ity, a method quite different from those used in light
optics or ultrarelativistic particle optics is needed. The
aim of our method is the transient inversion of the
group velocity. Phenomena similar to those observed in
metamaterials, as the negative refraction, metalens, etc.)
are expected. Other properties are specific of our “meta-
media.” In particular, the evolution of the wave-packet spatial
width exhibits unusual features, as a transient narrowing,
accompanying the negative refraction and related to time
reversal, and also a velocity change in the case of short
comoving potential pulses because of the nonconservation of
energy.

All these effects, on atom trajectories or wave-packet
width evolution, are directly observable provided that the
atomic velocities are low, typically of a few ms−1. At
higher velocity, like a few hundreds of ms−1, more sensitive
techniques are necessary. Atom interferometers in general
and Stern-Gerlach interferometers in particular, offer such
sensitivity. We have shown that observable optical-index
effects appear with magnetic fields as small as a few μT.

We have proposed an approach to atom beam decel-
eration based on dispersive optical forces. Atom stopping
should be almost achieved on short distances using a
moderate laser power, for example, less than 50 mW/mm2.
The absence of spontaneous emission processes should
allow preservation of the transverse coherence properties
of the initial beam. The technique is especially applicable
to narrow supersonic beams, like metastable rare-gas atom
beams, and it is able to provide us with ultra-low-velocity
beams for coherent atom optics and atomic interferometry.
It is also a promising technique applicable to slowing
down not solely diamagnetic atoms (such as metastable
argon atoms in the 3P0 state) but also molecules since any
optical pumping toward molecular levels other than those
interacting with light is absent. Slowing and trapping of
molecules is a subject of a particular importance in the
investigation of cold collisions (determination of intermolec-
ular potentials at large distances, resonances of various
kinds).
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