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Abstract, van der Waals transitions among magnetic sub-levels of a metastable rare gas atom passing 
near a surface immersed in a magnetic field, are described. Related transition amplitudes are calculated 
using both the sudden and the Landau-Zener approximations. Experimental data for Ne*( P2) atoms 
traversing a copper grating are presented. For a pair of surfaces {e.g. the opposite edges of a slit) and a 
sufficiently large coherence width, Fresnel's biprism interference fringes are obtained. From this 
interference pattern, detailed information about the transition amplitude at a sub-nanometric scale can 
be derived. The effect of gravity on this pattern is examined. 
Keywords: surface, anisotropic van der Waals interaction, metastable atoms, coherent atom optics, 
interferometry, diffraction 
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1. INTRODUCTION 
Till relatively recent years, it was commonly admitted that the interaction at moderate 

distance (1-100 nm) between an atom and a planar or quasi-planar solid surface, was a 
simple scalar attractive potential of the (non retarded) van der Waals (vdW) type in d ' , 
where d is the atom-surface distance. Actually this statement is based upon assumptions 
which are not fulfilled in many real situations. Firstly the solid is assumed to behave 
passively, which is only true for a perfect conductor. Indeed for a real conductor or a 
dielectric body the frequency dependence of the permittivity, s((i)), (and occasionally that 
of the magnetic permeability \\) is involved. This is of a special importance when an atom-
solid resonance occurs, giving rise in some cases to a repulsive rather than an attractive 
interaction [1]. Secondly, for non-planar surfaces the curvature radius of which is 
sufficiently small (a few nm), the distance dependence, while remaining calculable - at 
least in the case of a perfect metal - by use of the electrostatic-image method, departs 
from d ' . Last but not least, for atoms not in a S- state, such as rare gas metastable atoms 
heavier than helium, a quadrupolar term is added to the previous scalar contribution. This 
leads, for a perfect conductor, to the total interaction operator: 

Vvdw(d) = - (64 71 So d )̂ -^ [4 D^/3 + (O.nf - D^/3] (1) 
where D is the atomic dipole operator and n the normal to the surface. The quadrupolar 
term, proportional to (D.n) - D /3, breaks the atomic- (or molecular-) state symmetry 
and is able to induce a wide variety of transitions. Almost all types of such transitions 
have been experimentally observed so far: fine structure transitions ( Po -o- P2) in Ar* 
and Kr* [2], vibrational transitions (v + 1 -o- v) in metastable nitrogen molecules 
N2*(A Zu^ [3]. When an external static magnetic field B is applied, a Zeeman 
contribution (g \\.^ m B) is added to the interaction (1), where g is the Lande factor, \\.^ is 
the Bohr magneton and m the magnetic number. The Zeeman term is diagonal only in the 
Zeeman-state basis set, referred to the quantization axis B. On another hand the atom-solid 
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interaction refers to the normal n to the surface. In such a situation where two different 
quantization axes are involved, transitions among Zeeman states - so-called "van der 
Waals-Zeeman (vdW-Z) transitions"- are expected. These transitions, which have been 
already observed in Ne*( P2) [4] and later in Ar*( P2), will be the central subject of this 
paper. In part 2, the principle and two approximations used in the calculation of the 
transition amplitude are briefly presented and the main characteristics of this amplitude 
are described. Then an experimental evidence for vdW-Z transitions is given. In part 3 an 
atomic biprism interferometer based upon vdW-Z transitions occurring at the two borders 
of a slit is described. The influence of gravity on this device is also examined. 

2. VAN DER WAALS - ZEEMAN TRANSITIONS 

Calculation of the Transition Amplitudes 

Within the initial velocity range considered here (vo > 5 m/s) and owing to the atomic 
masses under consideration (M > 20 a.m.u), a semi-classical description of the atomic 
external motion is fully justified. Moreover, because of the smallness of the deflection 
angles caused by the interaction, a quasi-straight line trajectory, parallel to z axis, along 
which the atom velocity is practically a constant (vo), can be assumed. This trajectory 
passes in the vicinity of a solid surface modelled by a cylinder whose radius a is of the 
order of 1 \mi (the exact value is of no importance provided it is large enough). At the 
distance of minimum approach p, the normal n is perpendicular to z (x axis). As it will 
be seen further, the transition probability A(p) rapidly drops down to zero as soon as p 
exceeds PM ~ 3 nm « a. As a consequence, as the atom-surface distance at abscissa z, 
d(p,z) = [z + (a + p) ] ' - a, is larger than p, the interaction with the surface is restricted 
to a range in z much smaller than a. In other words the normal n rotates by a negligible 
angle during the passage of the atom through the region of interaction. Consequently the 
angle % = (n,B) « (x,B) can be considered as constant. Using the Wigner-Eckart theorem, 
one can express the vdW potential with the atomic angular momentum J instead of D. 
Finally the total potential experienced by the atom is: 

V(p,z) « g HB J.B - d(p,z) -̂  {C3 + (Ti/16) [(J.n)2 - j2/3]} (2) 
where C3 and r| are real constants characterising respectively the scalar and the 
quadrupolar parts of the vdW potential (in the case of Ar*, in atomic unit, C3 = 2.23 ± 
0.03, Ti=-0 .20 ±0.08). 

In the sudden approximation, valid at large enough velocity (typically larger than 50 
m/s), the surface-interaction time is supposed to be very small compared to the Larmor 
period in the magnetic field B. Under such conditions, the inelastic amplitude for the 
transition m ^ m', with m' < m, is given by [5]: 

Am,m<P,vo) = (m| exp[-i a(p,v„) J^ ] |m') (3) 

where a(p,vo) = 3:1 r| (128 ft vo)' ( 2 a / p ) ' (4) 
Completely analytical expressions of the Ani,m'-s can then be derived from (3), knowing 

the matrix elements (ml J^ \^)• For a non-polarized incident beam, the transition 

I P 
probability for a given value of Zkn = m ' - m < 0, is given by: PAHI = ^jji ZV^^ m-|Am| • ^^ 

an example, the behaviour of AQ.I as a function of p is shown in fig.l, for Ne* atoms at 
velocity vo = 780 m/s. 

In the quasi-adiabatic approximation, the eigenvalues of (2) are determined for each z 
value, at a given value of p. It worth to be noted that, for our purpose, the scalar term (-
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Cs/d ) can be ignored since it results into a shift common to all eigenvalues. Obviously if 
one assumes that, when z varies from -co to +co, the system adiabatically follows one of 
these eigenvalues (defined by the initial m value), then no transition occurs. However this 
evolution cannot be purely adiabatic because the potential curves exhibit either crossings, 
for X = 0, or avoided crossings for x + 0- This is readily seen from the very simple 
expression of the dimensionless "reduced" potential V, {i.e. the non scalar potential 
normalized by the Zeeman factor g \\.^ B), as a function of the new variable: 

p = -Ti(16gHBB)-M(p,z)- \ (5) 
namely: Vr(P) = J^-+ P [Jx^ - J^/3] , (6) 
the z'-axis being collinear to B. For J = 2 and 6 = 0, five straight lines are obtained, 
crossing at four points (P = 1/3, 1/2, 1, 1). 

Re[A] 

p(nm) 

FIGURE 1. Real part of the vdW-Z transition amplitude ^(p) for Ne* atoms (velocity VQ = 780 m/s), 

calculated in the sudden approximation, as a function of the distance of closest approach p (in nm); 

B= 289 G, angle x = (n,B) = 12° (see text). 

For X + 0, these crossings become avoided (at small angles, the separations in V, are 
respectively x, 5x 12, -^3/2%, 3% /4), but they remain in most cases well isolated from each 
other. This justifies the use of the well known Landau-Zener formula [6] to evaluate the 
amplitudes emerging from each crossing. Then, starting from a given entrance channel (m) 
and taking in account the phase shifts developed along all the possible paths connecting m to 
a specific output channel (m'), one is able to calculate the amplitude Anim'(p). At intermediate 
velocity (around 50 m/s), the inelastic amplitude is close to that given by the sudden 
approximation. The interesting point here is that the quasi-adiabatic approximation remains 

. . I |2 

valid at lower velocities. In particular it is seen that, for Ar* atoms, the intensity A 
increases by a factor of about 40 when vo decreases from 560 m/s down to 5.6 m/s. It is then a 
great advantage to slow down the atoms. This has been done for Ar*( P2) atoms, using a 
Zeeman slower operating with a laser frequency maintained in resonance with the ^P2-^D3 
atomic closed transition (k = 811.5 nm) by means of a special longitudinal magnetic-field 
profile. 

Two main features appear in A(p) : (i) a very limited range (PM) in p, within which A 
is not zero, (ii) an oscillatory behaviour. Owing to typical distances used in a standard 
experiment, the diffraction of the inelastic wave packet produced by vdW-Z transitions near 
the surface takes place in the Fraunhofer regime. This means that the amplitude B(6) 
diffracted at angle 6 with respect to the incident direction z is simply the Fourier transform of 
A(p). Therefore the two main features in A(p) appear in B(6) as: (i) a finite angular width A6 
~ X/pu, (ii) a shift y with respect to the z direction. Whilst B(6) is directly calculable, one 
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can more clearly exhibit these two features by using, for A(p), a very simple model, namely: 
Ao(p) = C(p) exp (iQp), where C is a square-shaped function (C = 1 for p < PM, C = 0 
elsewhere); Q is an averaged spatial frequency. In this case, one readily gets: 

Bo(e) = FT [Ao(p)] = 2 PM exp [i(ke - Q) PM] Smc [(kO - Q) PM] (7) 
where Sinc(x) = sin(x) / x. This expression clearly exibits both the angular shift y = Q/k and 
the angular width of the diffracted peak, A6 = }t / (2PM). The angle y can be directly derived 
from momentum-energy conservation rules. Indeed the process, assumed to be exo-energetic 
by an amount AE, generates a momentum change Ap along n. Then y being a small angle, 

y « A p / p o = (AE/Eo)''' (8) 
, where po is the initial momentum (parallel to z) and Eo the initial kinetic energy. For a given 
negative value of Zkn, one gets: 

y*(gM3B|Am|/E„)i '2 (9) 
Hence the mean spatial frequency 

Q = 'kj = (2g^^B\Am\Mf'/n (10) 

is independent of the initial velocity. 

Experimental Evidence of vdW-Z Transitions 

Experiments have been carried out with a beam of "fasf atoms, Ne*( P2) (vo = 780 m/s) 
[4, 5] and Ar*( P2) (vo = 560 m/s) traversing an inclined copper grating. The applied magnetic 
field B ranges from 150 to 600 Gauss. Figure 2a shows the angular distribution observed with 
Ne* atoms, B = 289 Gauss, % = 12°. Actually this distribution is the difference of signals 
obtained with and without B (the background line is the difference of two signals obtained 
with B = 0). A series of peaks are seen. They are related to vdW-Z transitions with Zkn = - 1 , -
2, -3 (vertical arrows show y values derived from (9)). These peaks are much wider than the 
incident beam profile (blue line) because of the diffractive spreading A6 (the dotted line is a 
simulation of this effect). This experiment has been repeated at different values of B. As 
shown by eq. (9), in a diagram (y, B ), each Zkn value corresponds to a straight line, as it is 
seen in figure 2b (without any adjustable parameter). To conclude, the system surface + B 
operates as an adjustable (via B) atomic beam splitter, potentially usable in atom 
interferometry. The next paragraph will describe such an application. 

(a) (b) 

I 

'" "-—' zero line 

angle y (mracl) 

-4 -6 -8 -10 -12 -14 
angle y (mrad) 

FIGURE 2. (a) Inelastic diffraction pattern; vdW-Z transitions with Am = -1, -2, -3 are indicated by vertical 
arrows; blue line: incident profile; full line: background; dotted line: diffracted peak calculated for Am = -1. 

(b) Experimental peak locations in the diagram (y, B ); straight lines are those given by eq.(9) (see text). 
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3. ATOMIC FRESNEL BIPRISM, SCHLIEREN NANOSCOPY 

Principle. Expected interference pattern 

Let us consider two opposite surfaces, e.g. the two edges of a slit, symmetric with 
respect to the z-axis at distances + w/2 along the x-axis, with w » PM. These surfaces are 
immersed in an homogeneous magnetic field B making angles % and K-% (equivalent as 
concerns the transition amplitudes) with opposite normal vectors + n. We consider here a 
beam of slow atoms (Ar* ( P2) at vo = 56 m/s), whose transverse coherence diameter is larger 
than w. Under such conditions, for a given value of Zkn (< 0), two narrow and mutually 
coherent wave packets are generated. As seen before they are deflected by opposite angles + y 
while they are strongly spread by diffraction (angular width A6). Beyond a certain distance 
from the slit, namely z > w/(y + A6/2), they overlap and produce, along the x direction, non-
localized interference fringes. These fringes are similar to those produced by a Fresnel 
biprism [7]. 

The diffraction regime depends on the Fresnel number, here F = w Q^z)' . For Ar* 
atoms at a velocity vo = 56 m/s, the wavelength is }t = 0.18 nm. Hence for w = l|im, the 
Fraunhofer regime is reached as soon as z » 5.5 mm, a condition we shall assumed to be 
fulfilled in the following. Therefore the diffraction amplitude U(6) produced by the pair of 
surfaces is simply the Fourier transform of the double transition amplitude: A(w/2 + x) + 
A(w/2 - x). As w/2 » PM, these two contributions do not overlap which immediately gives: 

U(e) = exp(-ikwe/2) B(e) + exp(+ikwe/2) B(-e) (11) 
The corresponding intensity is: 

1(6) = I B(e) I ^ + I B(-e) I ^ + 2 I B(e) B(-e) | cos [kw e - cp(e) + cp(-e)] (i2) 
where cp is the argument of B. Fringes correspond to the cosine term. For Q ^ Q, the fringe 
splitting is modified by the phase shift between B(6) and B(-6). Similarly the fact that B(6) ^ 

B(-6) leads to a limitation of the contrast: F = (Imax - Imm)/ (Imax + Imm) = 
2 |B(e)B(-e) | / [ |B(e) | '+ |B(-e) | ' ] . Actually F is more severely limited by the velocity 

dispersion 5vo/vo of the incident beam since the number of visible fringes is limited to VQ/ 5VO, 
i.e. to about 100. Other factors are expected to limit the fringe visibility: (i) the inclination of 
the interaction-zone line by some (small) angle with respect to the x axis has a quite 
negligible effect; (ii) the roughness of the slit borders adds a random contribution (Q to the 
width w; this also leads to a limitation of the visible fringe number given by w/(<^ >) , 
where <> is a statistical average; owing to realisable mechanical accuracy, this number (~10 ) 
is much larger than that imposed by the velocity dispersion and the roughness effect can be 
neglected. A third effect, which depends on the orientation of x with respect to the vertical 
direction, is also worth to be examined, namely the effect of gravity. 

Effect of gravity on the interference pattern 

The effect of gravity on Young-slit interference fringes has been investigated in the 
past by Shimizu et al. [8]. It has been also considered in the case of a three-grating atomic 
interferometer [9]. Here the effect is expected to be particularly important when the x 
direction is vertical, whilst it is negligible for x horizontal. Hence we shall restrict the 
discussion to the former case. A linear (parallel toy) and monochromatic (velocity vo) atom 
source Z crosses the z-axis at the origin (see figure 3). In a semi-classical (eikonal) 
description of the external motion, the rays related to the atomic wave are the classical 
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trajectories. Only z and x coordinates need to be considered. It is easy to verify that two such 
trajectories ("lower" and "upper" trajectories) join the source Z to a given point Q (of 
coordinates Z, X), provided that: 

X < l / ( 4 a ^ ) - a ^ Z ^ (13) 
where a = g / (2vo ), g being the gravity constant. For vo = 56 m/s and g = 9.81 m/s , one has: 
a = 0.00156 m' . When (13) is not fulfilled, no trajectory exists. This behaviour of the rays 
reflects that of the atomic wave: close to Z it is practically a diverging cylindrical wave. Then 
it "falls" and overlaps with itself, giving two contributions at any point Q whose coordinates 
satisfy eq.(13), otherwise the wave cannot reach the point. The source being assumed 
isotropic, the amplitudes of these two coherent contributions are proportional to the angular 
apertures dcp, dcp' within which lower and upper trajectories have to start in order to reach a 
given interval of width dX around X. Owing to the values of vo and the distances considered 
here, it is easy to verify that the upper-wave contribution is totally negligible. It will be 
ignored in the following calculation. 

For our purpose, the key quantity to be evaluated is the phase developed along the ray 
joining Z to Q. According to the eikonal approximation, this phase is given by: 

ĉ (Q) = J K.ds (14) 

where K = Mv / ft is the local wave vector, M being the atom mass and v the local velocity. 
As the integral is evaluated along the ray, K and the elementary displacement ds are collinear. 
Then: 

M ^ 
cKQ) = —Jv(t)Mt (15) 

n 0 

where x is the arrival time at point Q. 
In a general case, let us call P the angle between the z-axis and the velocity vector at the 
starting point. For given values of Z and X, with the condition X < (4a )' - a Z , one has: 

T (Z,X) = tan P = (2a^Z)-^ [1 - (1- 4a^ (X + a^Z^)) '̂̂ ] (16) 
Then, for instance, the phase developed from Z(0, 0) to S(L, w/2) has the analytic expression 
(equivalent to that given in [9]): 

, Mv„ 

ti 
(1 + T , ' ) " ' [L - 2a % L ' -4a^(l + T,^)L'] (17) 

where TE = T (L, w/2). The phase (|)' developed from Z to S' has the same expression, TE 
being replaced by TE' = T (L, -W/2). AS a consequence a phase shift appears between the two 
secondary sources S, S'. Then each of these sources is assumed to re-emit an isotropic wave, 
in phase with the wave it receives. Similar expressions are readily obtained for the phases 

z 
o 

i 

^ c 

7"̂ ^̂  
L 

•* • 

I 

s 

S' 

* 

y 

, 
HV_. 

Z 

^IIII::=» X 

• 

FIGURE 3. Classical trajectories used in the semi-classical calculation of the phases i|), i|)' developed from the 
source E to Young slits S, S', and those, \\i, \\i\ developed from S, S' to the observation point P. 
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\[i, \[i' developed from S or S' to the observation point P, by changing L into Z and ± w/2 into 
X + w/2. Finally the geometrical phase shift (here one ignores the additional term (cp(6) - cp(-
6)) present in eq.(12)) governing the interference is A = (|) + \|/ - (|)' - \|/'. 
By making g = 0, i.e. a = 0, one recovers the "ordinary" phase shift (ZVi) that appeared in 
(12). Indeed, in such a case, the different phases become (|)o, (|)o' with (|)o - (|)o' = 0 and 

y ^ ' ' = ^ [ ( X + w / 2 ) ^ + Z ^ r (18) 
n 

which gives, for Ixl and w small compared to Z, 

Ao = y o - W « - k w X / Z = - k w e (19) 
The main effect of g is a vertical shift of the central fringe. However, from an experimental 
point of view, gravity cannot be turned on and off so easily. One possibility is to rotate the slit 
SS' by 90° around z, making horizontal the x-axis. In spite of the difficulty to guarantee the 
strict invariance of other parameters during this operation, a qualitative characterisation of the 
effect is expected. Another possibility is to compensate gravity by an appropriate vertical 
magnetic gradient G. The difficulty is that the secondary sources S, S' are generated by a 
vdW-Z transition, so that the magnetic number m, and correlatively the effect of the gradient, 
is different for z < L and z > L. Nevertheless, in the special case of a transition from m = +1 to 
m' = 0, the effect of gravity can be compensated for z < L, while it is not for L < z < L+Z. 
Consequently this will only affect the phase shift (|) - <t'' induced by gravity between the two 
secondary sources. It is worth to note that the required gradient is easy to realize. It is simply 
given by: G = Mg /(gL|iB) (here the Lande factor is noted gL to be distinct from the gravity 
constant g). For Ar* atoms this gives G « 3.54 Gauss/cm. In fact this gradient can be scanned 
from zero up to this value, and even beyond, giving a way to vary gravity along the first half 
part of the experiment. An example of the effect of the magnetic gradient is shown in figure 4, 
for Ar* atoms at velocity vo = 5.6 m/s traversing a slit of width w = 1 |im. 

a eff . (rn"°- = ) 

FIGURE 4. Combined effect of gravity and vertical magnetic gradient G on the phase shift {if - if') between the 
two secondary sources (see text). The variable aeff (in m" ) is defined by a^s = (g - SLUB G/M) / (2vo ). For G = 

0, one has aeff = a = 0.0395 m""l 
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