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Abstract. Surface-induced exo-energetic inelastic transitions among atomic Zeeman states in a magnetic
field (“van der Waals – Zeeman” transitions) are useable as tuneable beam splitters. A transversally
coherent atom beam impinging a pair of opposite surfaces (e.g. 2 edges of a slit or of an ensemble of
periodic slits) gives rise to two coherently diffracted wave packets. Within the wave packet overlap, non-
localised interference fringes of the Young-slit type are predicted. From the diffraction pattern observed in
the Fraunhofer regime (Schlieren image), detailed information about the transition amplitude on a scale
of a few nanometers should be derived.

PACS. 03.75.Be Atom and neutron optics – 37.25.+k Atom interferometry techniques – 34.-35.+a Inter-
actions and atom-molecule potentials and forces

1 Introduction

The interaction between a solid and an atom located at a
mean distance d from the solid surface (0.5 ≤ d ≤ 100 nm)
is of the van der Waals (vdW) type (for reviews, see
e.g. [1,2] and references therein). In general, for atoms
having an internal angular momentum J , this interaction
is not spherically symmetric because, in addition to the
well known scalar vdW potential Vs = −C3/d3, there is a
quadrupolar contribution Vq = −η(J2

z −J2)/(16d3), where
η is a constant, z being the normal to the surface. This
part of the interaction breaks the atomic state symmetry
and is able to induce, for instance, fine structure transi-
tions in metastable argon and krypton atoms (Ar∗, Kr∗,
3P0 →3P2) [3]. In the presence of an external magnetic
field, this interaction induces transitions among atomic
Zeeman states (M → M ′ = M + ∆M), as it has been
shown for metastable Ne∗(3P2) atoms [4]. These transi-
tions have been called “van der Waals – Zeeman (vdW-
Z) transitions”. In the case of an exo-energetic transition
(∆M < 0), energy and linear momentum conservation
rules imply that the atom trajectory is deflected outwards
by an angle γ ≈ (∆E/E0)1/2, where E0 is the initial ki-
netic energy and ∆E = gµBB|∆M | is the Zeeman energy
splitting in magnetic field B, g being the Landé factor and
µB the Bohr magneton. For B of a few hundred Gauss
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and E0 = 65 meV, this angle γ is of a few mrad. Calcu-
lations, based upon either the sudden approximation [4]
or the Landau-Zener formula [5], show that, at thermal
energy E0, the complex transition amplitude A(ρ) rapidly
oscillates in the vicinity of the surface as a function of
the impact parameter ρ (i.e. the distance of closest ap-
proach) and then falls down to zero for ρ > 2 to 3 nm.
These calculations also show that the transition proba-
bility P (ρ) = |A(ρ)|2 increases at decreasing collision en-
ergies. Owing to the fact that the effective width ρef of
the transition zone (a few nm) is much smaller than the
transverse coherence radius of the beams commonly used
in such experiments (hundreds of nm), the inelastic pro-
cess is fully coherent in the sense that it produces a lin-
ear superposition of wave packets in the various outgoing
channels (∆M = −1,−2, . . .), each of them propagating
along its own direction (angle γ) [4]. As a consequence the
vdW-Z transition zone behaves as a beam splitter usable
in atom interferometers. This beam splitter is tuneable
since γ depends on the applied magnetic field B. In the
present paper, a novel phenomenon in the domain of co-
herent atom optics is predicted and analysed, namely the
atomic counterpart of the Fresnel biprism interferometer
using vdW-Z transitions as beam splitters. The principle
of this device is described in Section 2. Then a discussion
based upon a realistic example will show how detailed in-
formation about the transition amplitude can be extracted
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Fig. 1. (Color online) Principle of the biprism inter-
ferometer: S1, S2 are two opposite surfaces separated
by a distance w along the x axis, able to induce the
vdW-Z transition ∆M = −1 in a magnetic field B.
A single incident atomic wave packet in Zeeman state
M = +2 (in black), wider than w in the x direction,
generates in the vicinity of S1,2, narrow wave packets
in Zeeman state M = +1 (in blue) which are deflected
out of the surface and strongly spread as they prop-
agate towards z > 0. Meanwhile the M = +2 wave
packet is simply elastically diffracted by the slit and
then eliminated by an appropriate filter. In the over-
lapping zone of M = +1 wave packets interference
fringes appear (horizontal blue lines).

from the interference pattern (Sect. 3). Finally conclusions
and perspectives will be given in Section 4.

2 Principle of the atomic Fresnel biprism

Let us consider two identical opposite solid surfaces (e.g.
the 2 edges of a metallic slit), separated by a distance
w of a few µm (see Fig. 1). These surfaces can be mod-
elled by parallel cylinders the radius of which is typically
1 µm, but the exact value of the curvature radius is not
important for our purpose. Atoms with non-zero angular
momentum, initially polarised in a Zeeman state |M〉, are
assumed to be normally incident on the slit at a veloc-
ity vi. In the following calculations and simulations, we
will consider metastable argon atoms Ar∗(3P2), at veloc-
ity 56 m/s, polarised in Zeeman state M = +2. In previ-
ous experiments using a special nozzle beam of Ar∗ atoms
at a velocity of 560 m/s [6], it has been shown that the
transverse coherence radius was Rc = 0.62 µm. At lower
velocity, this radius will be larger, certainly larger than
w/2, even for w of a few µm. Under such conditions, a
single incident atomic wave packet can touch both sur-
faces at the same time, generating, via the vdW-Z transi-
tion (∆M = −1), two symmetric wave packets in Zeeman
state M = +1, the width of which along the x direction
is ρef ≈ 2 − 3 nm. These packets are deflected by oppo-
site angles ±γ. In the present case, for argon atoms with
vi = 56 m/s and B = 100 G, γ ≈ 36 mrad. Because of their
small width, the packets strongly spread as they freely
propagate towards z > 0. The related diffraction regime
depends on the Fresnel number F = a2/(λz0) where a is
the size of the diffracting object, λ the de Broglie wave-
length and z0 the distance of observation. If the size of the
diffracting object under consideration is ρef ≈ 2 nm, then
at vi = 56 m/s, i.e. λ = 0.18 nm, one gets the Fraunhofer
regime, i.e. F � 1, as soon as z0 � 22 nm. This leads to
an angular width of the corresponding diffraction pattern
∆θ ≈ 60−90 mrad. It may be noted that a similar diffrac-
tion effect can be made responsible for the rather large
angular width (several mrad) of the vdW-Z peaks previ-
ously observed with Ne∗ atoms at 780 m/s [4,5]. Beyond
some distance from the slit (z0 > w/[2(γ + ∆θ)]), the two
wave packets overlap, giving rise to non-localised interfer-
ence fringes [7,8] of the Young-slit or Fresnel-biprism type,

along the transverse (x) direction. Actually for a pair of
surfaces, the diffraction regime needs to be re-examined in
so far as the related Fresnel number is F ′ = w2/(λz0). This
leads to the Fraunhofer regime provided that z0 � w2λ
For example, with w = 5 µm, one gets the more severe con-
straint z0 � 0.137 m. In the following discussion we shall
assume that the condition of validity of the Fraunhofer
regime always holds. Under such conditions the diffracted
amplitude at a transverse abscissa X and a distance z0

from the slit, has a purely angular dependence, on the
angle (assumed to be small) θ = X/z0. It is simply the
Fourier transform of the inelastic amplitude A12(x) gen-
erated by the two surfaces in plane z = 0. Up to a constant
factor it is given by:

u(θ) =
∫ +∞

−∞
A12(x) exp[i k θ x] dx. (1)

Therefore, once one has eliminated the transmitted wave
packet remained in the initial Zeeman state M = +2, one
gets a purely diffractive image, an atomic Schlieren pho-
tography, of the vdW-Z transition amplitudes, the range
of which is of a few nanometers.

The complex amplitude A12(x) is symmetric in x
within the interval [−w/2, +w/2]. It is the sum:

A12(x) = A(w/2 + x) + A(w/2 − x) (2)

where A(ρ) is the vdW-Z transition amplitude as a func-
tion of the impact parameter ρ. The two amplitudes in (2)
do not overlap since ρef � w. The Fourier transform (1)
takes the form:

u(θ) = e−ikwθ/2

∫ ε

0

A(ρ) eikθρ dρ + e+ikwθ/2

×
∫ ε

0

A(ρ) e−ikθρ dρ (3)

where ε is a value of ρ such that w/2 > ε > ρef , with
A(ρ) ≈ 0 for ρ > ε. As A(ρ) = 0 for ρ < 0, the first inte-
gral in (3) is the Fourier transform B(θ) of the transition
amplitude since:

B(θ) =
∫ +∞

−∞
A(ρ) eikθρ dρ. (4)
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Finally one gets a diffraction amplitude u(θ) symmetric
in θ:

u(θ) = e−ikwθ/2B(θ) + e+ikwθ/2B(−θ). (5)

From (5) one readily derives the intensity:

I(θ) =|u(θ)|2
=|B(θ)|2 + |B(−θ)|2 + 2|B(θ)B(−θ)|
× cos[kwθ − ϕ(θ) + ϕ(−θ)] (6)

where ϕ(θ) = Arg[B(θ)].
Young-slit-, or biprism-interference fringes are gov-

erned by the phase term kwθ which gives rise to a fast
oscillation. In general the interference pattern has its cen-
tral bright fringe at θ = 0, but the location of lateral
fringes is modified by the term ϕ(θ) − ϕ(−θ). This effect
(as well as the angular width of |B(θ)|), is related to the
finite spatial width of A(ρ). It is especially marked when
the ratio ρef/w is not too small.

The contrast of the fringes is limited since it is given
by the expression:

Γ =
2|B(θ)B(−θ)|

|B(θ)|2 + |B(−θ)|2 . (7)

It should be noted that, if A(ρ) is real, then B(θ) =
B(−θ)∗ and Γ ≡ 1, but this is not the case for inelastic
transition amplitudes which are generally complex. The
asymmetry of |B(θ)|, in other words the limited contrast,
i.e. the angular behaviour of upper and lower envelopes
of the fringes, reflects the oscillatory character of A(ρ).
This point is readily seen in assuming for instance that
A(ρ) = eiKρ for 0 ≤ ρ ≤ ε and A = 0 elsewhere, K
being a real constant. Then B(θ) = ε exp[ i

2 (K + kθ)ε]
Sinc [12 (K + kθ)ε], where Sinc(u) = sinu/u. Oscillations
in A(ρ) and correlatively the shift of the maximum of
|B(θ)| with respect to θ = 0, are the fingerprint of the
phase shift induced by the interaction potential accumu-
lated along a rectilinear trajectory of impact parameter
ρ. From a semi-classical viewpoint, the stationary-phase
point corresponds to the classical deflection angle γ. In a
general case, the examination of the lower and upper en-
velopes of the fringes allows us, in principle, to derive – up
to a constant factor – the modulus |B(θ)|, whereas that
of the fringe spacing leads to the argument of B(θ). Nev-
ertheless, from an experimental point of view, this evalu-
ation is not as obvious as one could expect because of the
finite velocity spread δv/v of the atom beam (typically
1%). This velocity dispersion strongly limits the number
of visible fringes, to about v/δv (here 100, whereas, for w
of a few µm, thousands of fringes are expected within the
envelope). As a consequence, except in the central part
of the pattern, only the mean value of the intensity, i.e.
〈I〉 = |B(θ)|2 + |B(−θ)|2 can be measured. The extension
of this central region is a matter of compromise.

3 Experimental constraints

We have assumed so far two diffracting surfaces strictly
symmetric with respect to the z axis. Actually these sur-

faces depart from this ideal geometry by two types of
defects: (i) some roughness adding a random contribu-
tion ξ to the width w, (ii) a misalignment relatively to
the x axis, i.e. a tilt of the slit by some angle α in the
x−z -planes whereas the incident direction remains along
z. The first defect is expected to cause an effect simi-
lar to that of the velocity dispersion, namely a loss of
contrast limiting the number of visible fringes to about
w/〈ξ〉, where 〈ξ〉 is the rms value of ξ. Owing to usu-
ally accessible mechanical accuracy, this effect should be
negligible compared to that of the velocity spread. The
misalignment (α) would have strictly no effect in the case
of an elastic process. Here however the wave number k is
changed by δk, which shifts the central fringe to an angle
θc = (δk/k)α = (γ2/2)α ∼ 10−3 α. Then this is a quite
negligible effect. Another effect of the tilt, present for both
elastic and inelastic processes, is a change in the open part
of the grating slits which results into a change of intensity
at different orders, but the diffraction peak positions are
not modified. Such tilted gratings have been previously
used in the analysis of the effect of the scalar vdW po-
tential on the elastic diffraction [9]. The insensitivity of
the pattern to α, i.e. to the z coordinates of the active
zones of the surfaces, is clearly an advantage when the
slit is deformed along the y direction, i.e. neither strictly
rectilinear nor parallel to the y axis, making α randomly
vary as a function of y (see Fig. 1). It is also an important
advantage when a transmission grating is used. However,
and precisely for this reason, tilting the slit is not a mean
to significantly move the central fringe – accompanied by
the narrow zone of fringe visibility – along the pattern. It
is possible to use, instead of a strictly homogeneous mag-
netic field, a tiny longitudinal gradient along the x axis.
For large distances of observation (several mm along z),
such a field gradient is able to phase-shift one diffracted
amplitude with respect to the other by a large number of
2π, i.e. to move the central fringe by a large number of
inter-fringe spacing.

When a transmission grating is used instead of a single
slit and provided that a single incident wave packet tra-
verses N slits, only the figure of the Young-slit fringes is
modified. It is simply multiplied by the standard grating
factor | sin[(N + 1)ϕ/2]/ sin(ϕ/2)|2 where ϕ = k Λθ is the
phase shift between the amplitudes diffracted by two suc-
cessive slits, Λ being the grating period. On the other hand
the envelopes, which are entirely determined by the tran-
sition amplitude profile, remain the same. A geometry of
special interest is that in which Λ = 2w. In such a case, the
grating diffraction peaks alternately coincide with bright
and dark biprism fringes. The whole information about
the transition amplitude is preserved, with, theoretically,
a substantial gain on the signal since the bright-fringe in-
tensity is multiplied by N2. However this gain is limited by
the angular resolution because the peak width is divided
by N . When diffraction peaks are no longer resolved, the
gain is N rather than N2. Such a gain, N2 or N , appears to
be important from an experimental point of view because
of the smallness of the expected signal. As mentioned be-
fore [4,5], van der Waals – Zeeman transitions have been
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Fig. 2. Behaviour of the real part of the vdW-Z transition
amplitude A(ρ) generated by a surface immersed in a magnetic
field (see text, Eq. (8)), as a function of the impact parameter
ρ (in nm).

previously observed with fast metastable neon atoms (Ne∗
3P2, velocity 780 m/s) traversing a copper grating (effec-
tive slit width 5.8 µm) over 7 slits, within a magnetic
field ranging from 150 to 600 Gauss. The inelastic sig-
nal for ∆M = −1 produced by one series of slit upper
edges has been estimated to be about 2 × 10−4 times the
flux directly transmitted through the grating (about 105

atoms per second), which leads to 20 atoms/s in the in-
elastic channel. Under the present conditions (Ar∗ atoms
slowed down at 56 m/s) one expects a transition proba-
bility about 5 times larger than the previous one, which
gives the relatively reasonable value of 15 atoms/s for a
single slit.

According to previous computer calculations (see
Ref. [4]), a typical vdW-Z transition amplitude A(ρ) can
be reasonably modelled for ρ > 0 by the following analyt-
ical function:

A(ρ) =
B + Cρ2

1 + exp[D(ρ − ρef )]
exp[−2πiE(ρ + F )−3] (8)

where (all distances are in nm) B = 0.15, C =
0.2125 nm−2, D = 7.0 nm−1, E = 0.625 nm3; F =
0.01 nm is a cut-off parameter. The real part of A(ρ),
with ρef = 2 nm, is shown in Figure 2. This model will
essentially serve as a test for the “partial inversion” used
to extract as much information as possible about A(ρ)
from the overall diffraction pattern, i.e. from the angular
dependence of the diffracted intensity I(θ) given by equa-
tion (6). The Fourier transform B(θ) of A(ρ) (squared
modulus and argument) is shown in Figure 3a. It is seen
that, as expected, |B(θ)|2 is neither symmetric nor cen-
tred. Its maximum is located at θ ≈ −65 mrad. This value
is comparable to typical deflection angles γ, which just
shows that our model is reasonable. It is interesting to
compare these results to those obtained when the oscil-
lating factor in equation (8) is suppressed (see Fig. 3b).
As expected the Fourier transform B′(θ) (squared modu-
lus and argument) becomes centred and symmetric. Ac-
tually B(θ) is simply the convolution product of B′(θ) by
the frequency spectrum of the oscillations present in A(ρ).
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Fig. 3. (a) Fourier transform B(θ) of A(ρ): upper part, squared
modulus; lower part, argument (modulo [π]). (b) Same as (a)
but the oscillating factor in A(ρ) is ruled out. As expected the
Fourier transform B′(θ) is now centred and symmetric.
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Fig. 4. Calculated interference pattern of a Fresnel atomic
biprism operating with Ar∗ metastable atoms at a velocity of
56 m/s (de Broglie wavelength λdB = 0.18 nm), through a slit
of width w = 50 nm. The real part of the transition amplitude
A(ρ) is shown in Figure 2. The fringe spacing is ∆θ = 3.8 mrad.

Therefore in principle, provided that a realistic model is
chosen for the transition probability, a de-convolution pro-
cedure is able to extract the oscillatory factor present in
the transition amplitude. Figure 4 shows the complete
diffraction pattern for w = 50 nm. This rather small (but
realisable) distance has been chosen in order to make vis-
ible the fringes (separated by 3.8 mrad) together with
their upper and lower envelopes, which extends over about
±200 mrad.

4 Conclusion and perspectives

The examination of short-range vdW-Z transition ampli-
tudes is made possible owing to the combination of atomic
diffraction and atomic interference, at moderately low ve-
locities. There is no doubt that such an experiment is diffi-
cult but it is worth to be undertaken because of the large
amount of information it is expected to provide. Indeed
not only transition probabilities are measurable but also
some information about the oscillating part (the phase)
of transition amplitudes can be obtained, providing us
with a detailed information on the quadrupolar part of
the vdW-surface interaction. The present Fresnel biprism
configuration produces non-localised interference fringes.

Such a device is then an open interferometer, in so far as
its structure does not contain any well-defined single loop,
contrarily to, for instance, Mach Zehnder or polarisation
interferometers. As a consequence this interferometer is
not sensitive to inertial effects, e.g. rotation. Various meth-
ods can be used to close the interferometer. One of the
simplest one is to insert a transmission grating within the
overlap region. By superposing order 0 from one side with
order 1 from the other side, co-propagating phase-shifted
wave packets are obtained, the wave vector matching be-
ing realized e.g. by choosing the convenient velocity. Note
that in its simple open configuration, the Fresnel biprism
is an instrument to directly measure the degree of trans-
verse coherence in an atomic beam, e.g. by using a slit of
an adjustable width.

The authors are members of the Institut Francilien de
Recherche sur les Atomes Froids (IFRAF).
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